Light sterile neutrinos in the early universe

Cecilia Lunardini Arizona State University

v_s and cosmic radiation energy density

- Motivations and status
 - how much room for v_s in the universe?
- Contribution to radiation energy density: suppression effects
 - Partial thermalization
 - Mass correction
- discussion

How much room for v_s in the Early Universe?

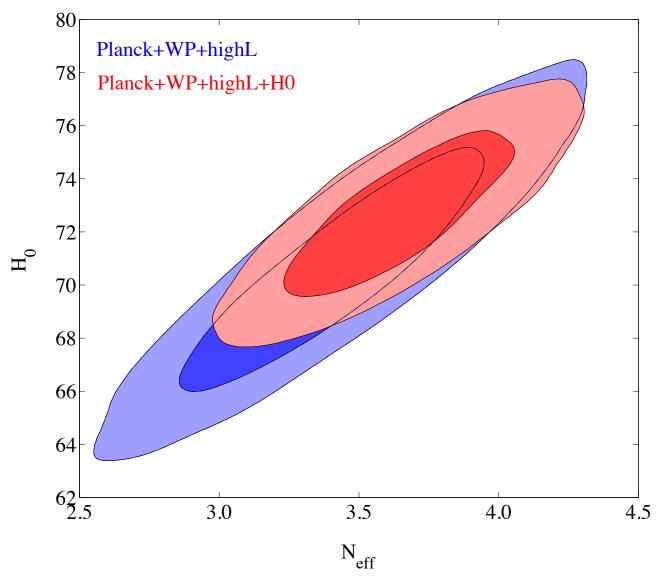
MOTIVATION AND STATUS

Probing new light particles with cosmology

- Effective number of relativistic species:
 - in units of neutrinos: $N_{ ext{eff}} = rac{
 ho_{ ext{rel}}
 ho_{\gamma}}{
 ho_{
 u}^{ ext{th}}},$
 - Neutrino energy density $ho_{
 u}^{
 m th}=(7\pi^2/120)(4/11)^{4/3}T_{\gamma}^4$
- Standard Model: $N_{eff} = 3.046$
- Beyond the SM: dark radiation
 - $-\Delta N_{\rm eff} = N_{\rm eff} 3.046$
 - generally time dependent, non-integer

Measurements of N_{eff}

- Big Bang Nucleosynthesis (BBN)
 - $-T \approx 0.2 \text{ MeV}$
 - New, higher ⁴He mass fraction:

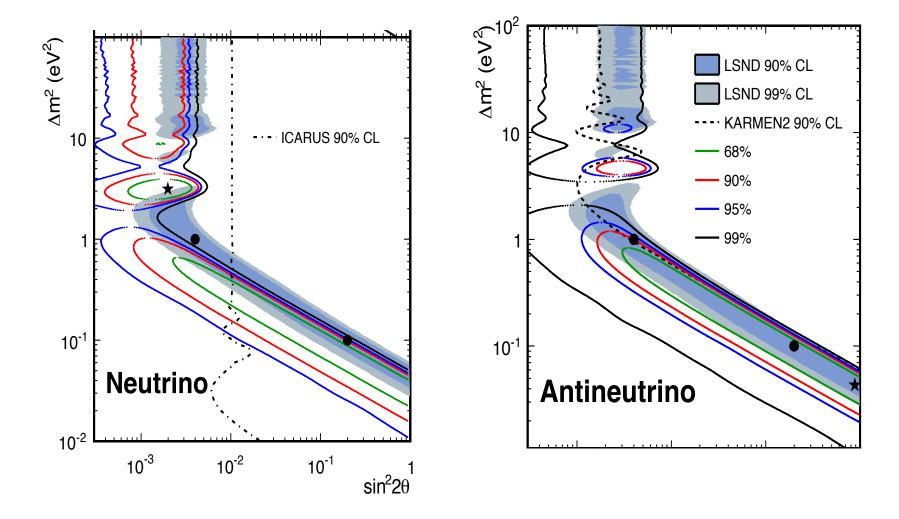

$$Y_p = 0.2565 \pm 0.0010 ({
m stat.}) \pm 0.0050 ({
m syst.})$$
 Y. I. Izotov and T. X. Thuan, ApJ 710, L67 (2010)
$$N_{
m eff}^{
m BBN} = 3.68^{+0.80}_{-0.70}$$

Aver, Olive, and Skillman, JCAP 1005, 003 (2010), JCAP 1204, 004 (2012), Mangano and Serpico, Phys.Lett. B701, 296 (2011), Nollett and Holder, (2011), arXiv:1112.2683

Measurements of N_{eff}

- Cosmic Microwave Background (CMB)
 - matter-radiation equality, T_{eq} ≈ 0.79 eV

Planck	$N_{\rm eff}^{\rm CMB} = 3.30 \pm 0.27$
SPT	$N_{\rm eff}^{\rm CMB} = 3.71 \pm 0.35$
WMAP9	$N_{\rm eff}^{\rm CMB} = 3.84 \pm 0.4$
ACT	$N_{ m eff}^{ m CMB} = 2.78 \pm 0.55$

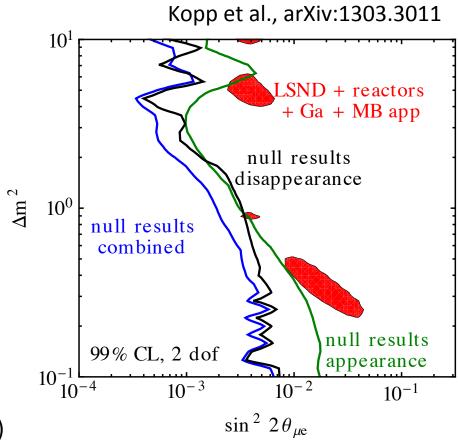

Archidiacono et al., arXiv:1307.0637

There is room for v_s

- N_{eff} > 3 is allowed, or even favored
 - Depending on details of analysis
 - $-N_{eff}$ = 4 probably allowed, N_{eff} =5 probably excluded

Oscillation searches for v_s

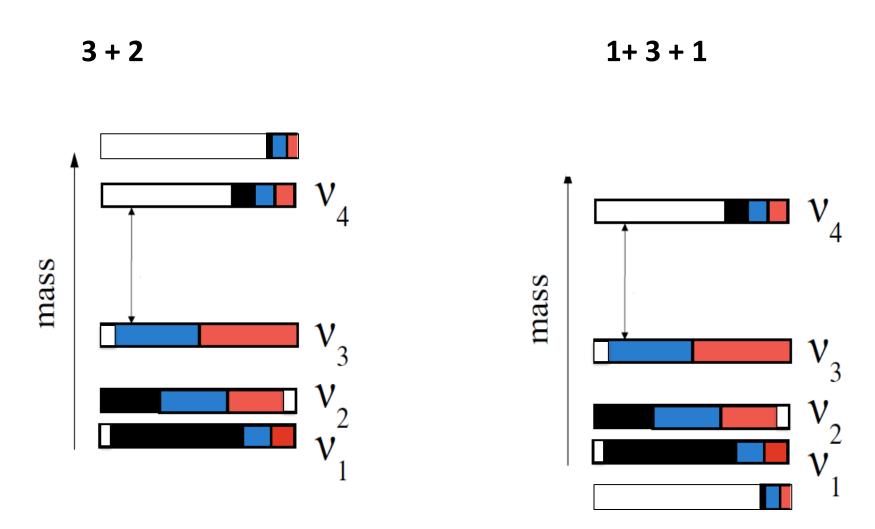
- LSND, MiniBooNE : claim of $v_{\mu} \rightarrow v_{e}$ appearance
 - Effective angle: $\sin^2 2\theta_{\mu e} \equiv 4|U_{\mu 4}U_{e 4}|^2$
 - Tension with negative results: Icarus, Karmen,
 E776, Nomad
 - Tension between v_e and anti- v_e MiniBooNE data sets

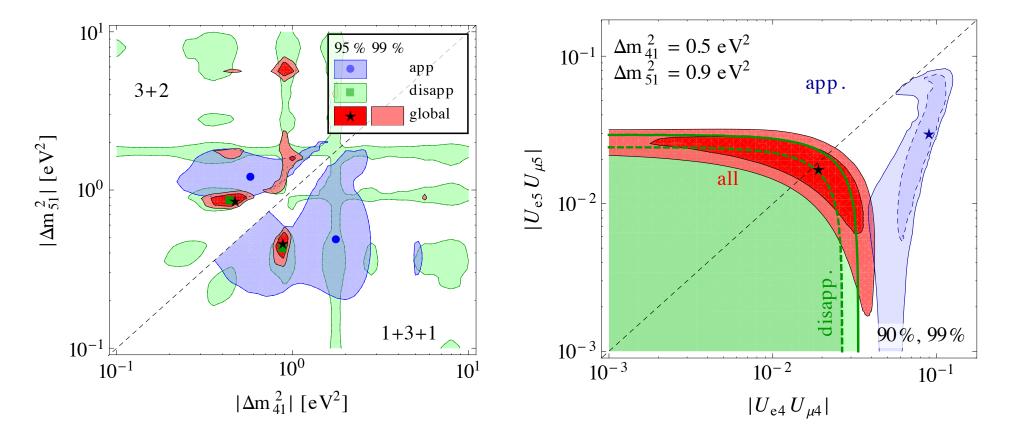


Aguilar-Arevalo et al., arXiv:1303.2588

Other hints of v_s

- Reactor anomaly
 - anti-v_e disappearance
- Gallium anomaly
 - $-v_e$ disappearance


Mueller et al., PRC83, 054615 (2011) Mention et al., PRD83, 073006 (2011) Giunti and Laveder, PRC83, 065504 (2011) Kaether, et al., PLB685, 47 (2010), Abdurashitov et al. PRC80, 015807 (2009)



How many light v_s ?

- 3 + 1 (1 sterile)
 - Minimal model, fits well MB v and MB anti-v data separately
 - Poor fit of MB v and MB anti-v data combined

- 3 +2 (2 sterile)
 - Allows CP violation
 - Favored by MB v and MB anti-v data combined

Kopp et al., arXiv:1303.3011, Giunti and Laveder, PRD84, 073008 (2011)

Contribution of v_s to N_{eff}

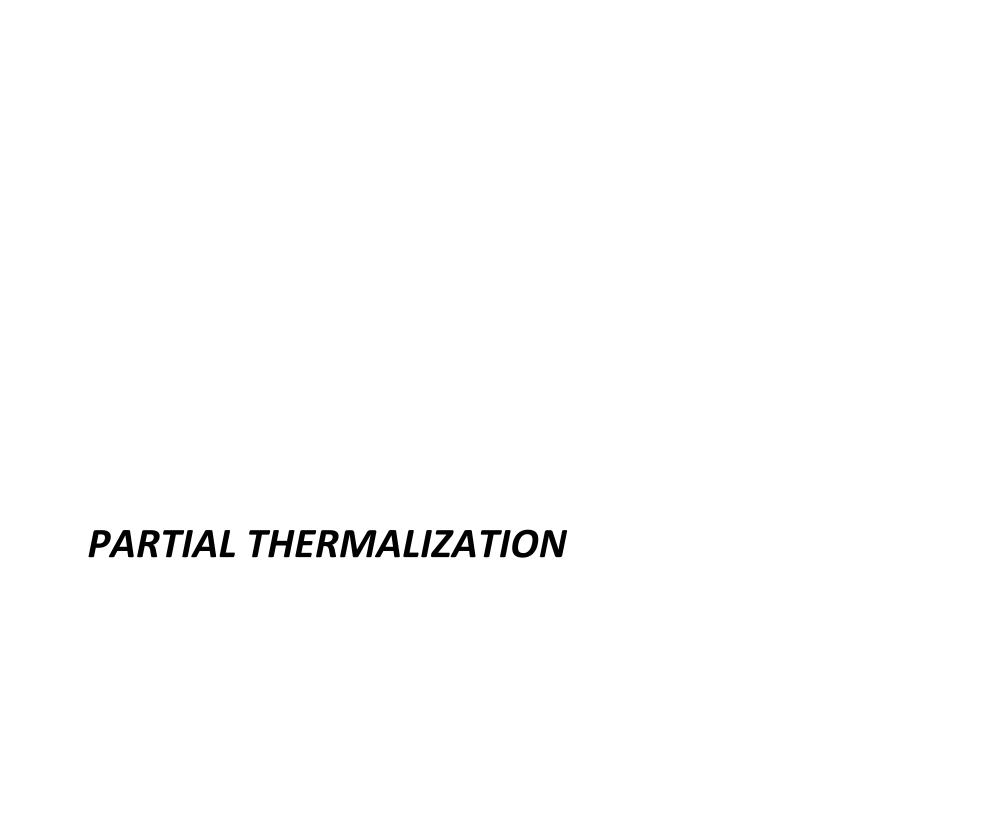
- Production: interplay of oscillations and collision
 - "thermalization line" : production rate ≈ Hubble rate
- $3 + 1 : v_s$ thermalized
 - $-N_{eff} = 4$
 - Constrained by cosmological mass bound

Cirelli et al., Nucl.Phys. B708 (2005) 215-267 Chu and Cirelli, Phys.Rev. D74 (2006) 085015 LM Krauss, C.L. & C. J. Smith, arXiv:1009.4666

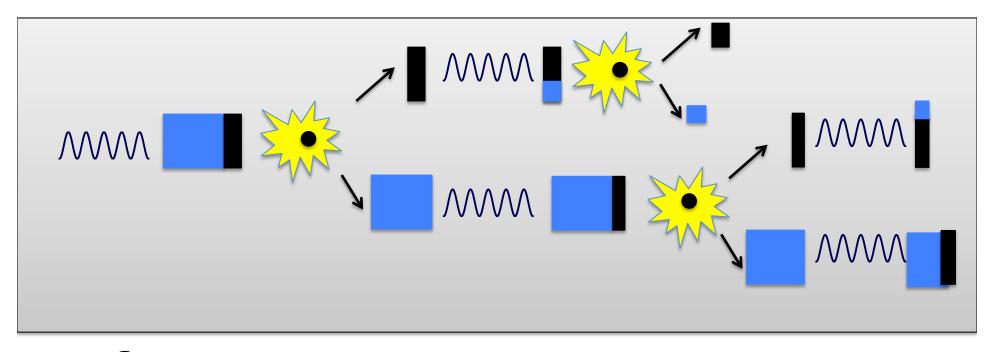
3+2: richer phenomenology

T. Jacques, L. Krauss, C.L., Phys. Rev. D 87, 083515, arXiv:1301.3119

- Incomplete thermalization
 - important to assess tension between SBL and dark radiation bounds
 - Lessens tension with cosmological mass bound
- At least 1 mildly relativistic at T_{eq}
 - Suppressed contribution to N^{CMB}_{eff}


References

- S. Dodelson, A. Melchiorri, and A. Slosar, Phys.Rev.Lett. 97, 041301 (2006)
- J. Birrell, C.-T. Yang, P. Chen, and J. Rafelski, (2012)
- S. Joudaki and M. Kaplinghat, Phys.Rev. D86, 023526 (2012)
- R. Foot and R. R. Volkas, Phys. Rev. Lett. 75, 4350 (1995).
- P. Di Bari, P. Lipari, and M. Lusignoli, Int.J.Mod.Phys. A15, 2289 (2000)
- K. Abazajian, G. M. Fuller, and M. Patel, Phys. Rev. D64, 023501 (2001)
- R. Foot and R. R. Volkas, Phys. Rev. D55, 5147 (1997)


Melchiorri et al., JCAP 0901, 036 (2009)

Partial thermalization
Mass correction

CONTRIBUTION TO RADIATION DENSITY: SUPPRESSION EFFECTS

Growing a v_s population

- Quantum measurement
 - Collisions break the coherence of the wavepackets
 - $-v_s$ can accumulate and reach thermal abundance

Neutrino scattering

- Coherent : oscillations
 - Zero lepton asymmetry

$$V_{\alpha} = -A_{\alpha} \frac{2\sqrt{2}\zeta(3)}{\pi^2} \frac{G_F T^4 p}{m_W^2}$$
 $A_e = 17 \text{ and } A_{\mu,\tau} = 4.9$
 $\sin^2 2\theta_{\alpha s} \simeq 4U_{\alpha 4}^2 U_{s 4}^2 \simeq 4U_{\alpha 4}^2$, $\alpha = e, \mu$
 $\sin^2 2\theta_m \simeq \frac{\sin^2 2\theta_{\alpha s}}{(1 - b_{\alpha}(p, T))^2}$ $b_{\alpha}(p, T) = \frac{2EV_{\alpha}}{\Delta m^2}$

Incoherent: collisions

$$\Gamma_{\alpha} \simeq y_{\alpha} \frac{180\zeta(3)}{7\pi^4} G_F^2 T^4 p, \qquad y_e = 3.6, \ y_{\mu,\tau} = 2.5.$$

Production rate

Assuming I_{osc} << I_{mfp}

$$\left(\frac{\partial}{\partial t} - HE\frac{\partial}{\partial E}\right) f_s(E,t) = \frac{\sin^2 2\theta_m(E,t)}{2} \frac{\Gamma_a(E,t)}{2} (f_\alpha(E,t) - f_s(E,t))$$
 Avg. oscillation probability Collision rate

"thermalization line":

$$\frac{\sin^2 2\theta_m(E,t)}{2} \frac{\Gamma_a(E,t)}{2} \approx H = \sqrt{\frac{4\pi^3 g^*}{45}} \frac{T^2}{M_{\rm pl}}$$

Analytical solution: f_s at decoupling

Assume:

- $-v_s$ mixed with v_μ and v_e
- $-g^*$ constant, f_{α} constant, b_{α} <<1 at freeze-out

• Result:

$$\frac{f_s}{f_{\alpha}} \simeq 1 - \exp\left[-6.51 \times 10^2 \left(\frac{m_4}{eV}\right) \left(U_{e4}^2 + 1.29U_{\mu 4}^2\right)\right]$$

- $-f_s/f_{\alpha}$ momentum-independent
- generalized to 3+2 (if 2 steriles don't mix)

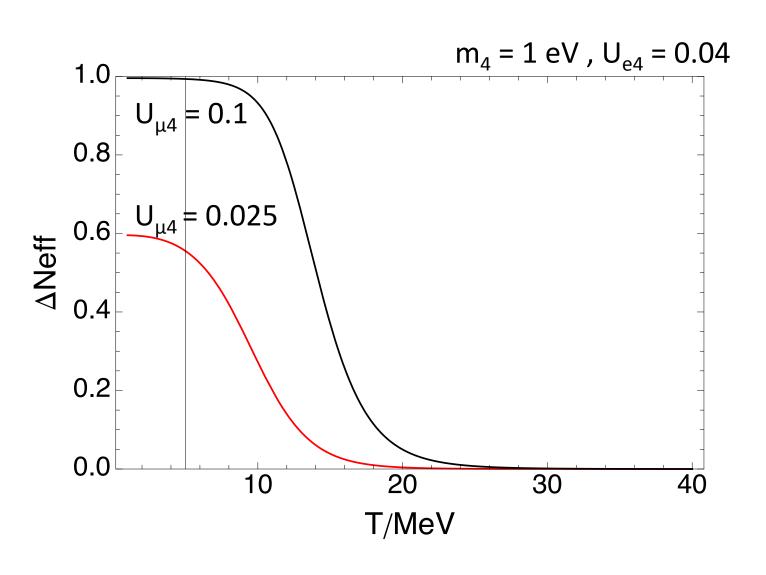
Dodelson and Widrow, PRL. 72, 17 (1994), Foot and Volkas, PRD, 5147 (1997)

Numerical solution for 3+2

$$\dot{\rho} = \mathcal{H}\rho - \rho \mathcal{H}^{\dagger} = -i[H_m + V_{\text{eff}}, \rho] - \{\frac{\Gamma}{2}, (\rho - \rho_{eq})\}$$

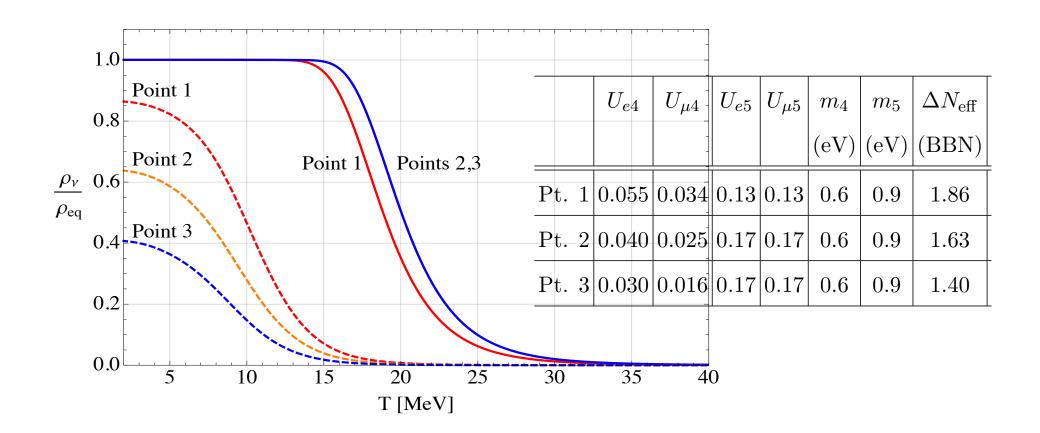
$$\left(\frac{\partial \rho}{\partial T}\right)_{\frac{E}{T}} = -\frac{1}{HT} \left(-i[H_m + V_{\text{eff}}, \rho] - \{\frac{\Gamma}{2}, (\rho - \rho_{eq})\}\right)$$

$$H_m = U H_0 U^{\dagger} \qquad H_0 = \text{diag}(E_1, E_2, E_3, E_4, E_5)$$


$$V_{\text{eff}} = I(V_e, V_{\mu}, V_{\tau}, 0, 0) \qquad \Gamma = I(\Gamma_e, \Gamma_{\mu}, \Gamma_{\tau}, 0, 0)$$

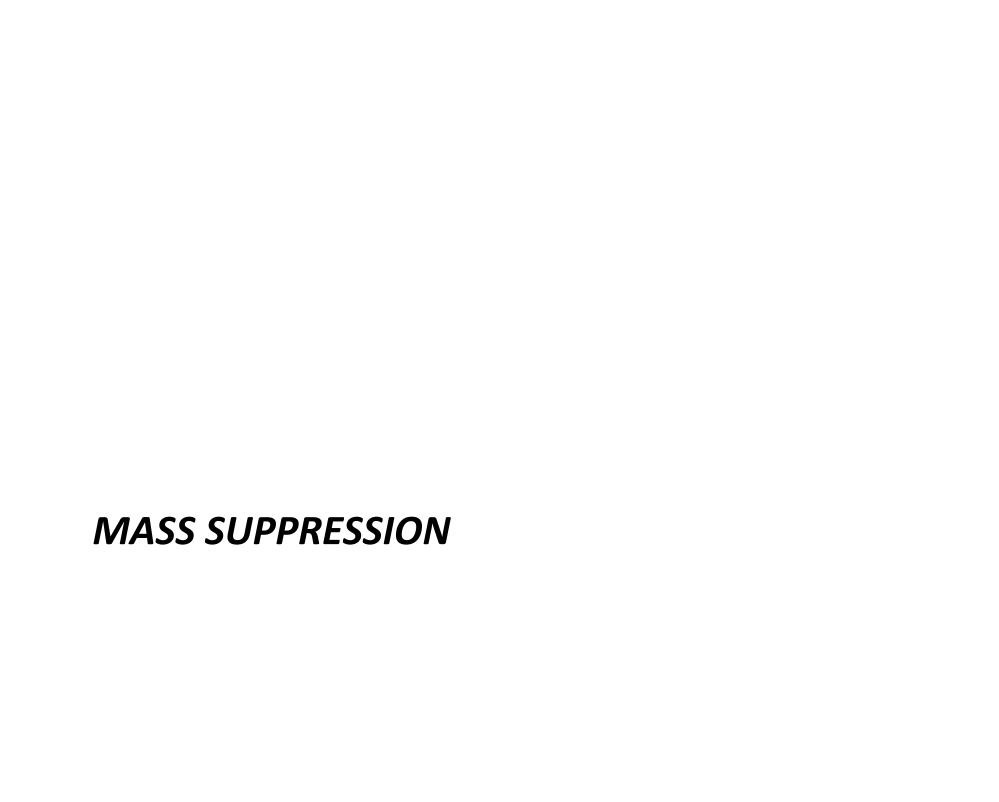
$$\rho_{eq} = I \left(1/(1 + e^{E/T})\right)$$

Monochromatic approximation


Melchiorri et al., JCAP 0901, 036 (2009)

Results: ΔN^{BBN} eff

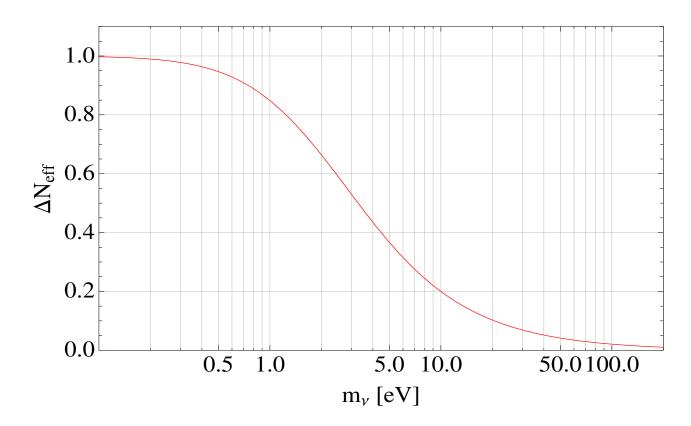
ΔN^{BBN}_{eff} for 3+2


- Scan of allowed region from Giunti and Laveder, 2011
- Shown: points allowed within 2σ, giving minimum N_{eff}

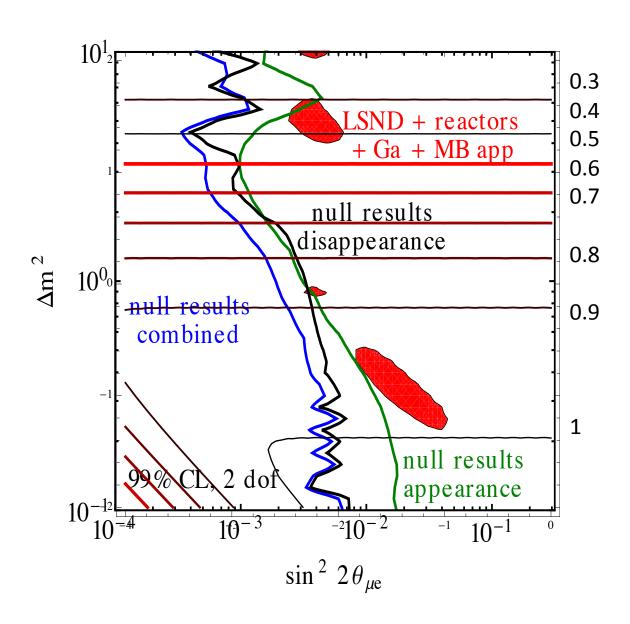
Summary: v_s at BBN

- 3 + 1 predicts $N_{eff}^{BBN} = 4$
 - in absence of lepton asymmetry
 - Tension with cosmology?

- 3+2 predicts $N_{eff}^{BBN} \sim 4.4 5$
 - Tension with cosmology


CMB: mildly relativistic v_s

- Neutrino "temperature" at matter/radiation equality: T_v≈0.55 eV
 - Comparable with $m_4 \sim eV$
- Contribution to N^{CMB}_{eff} through *pressure* density
 - Mass must be included

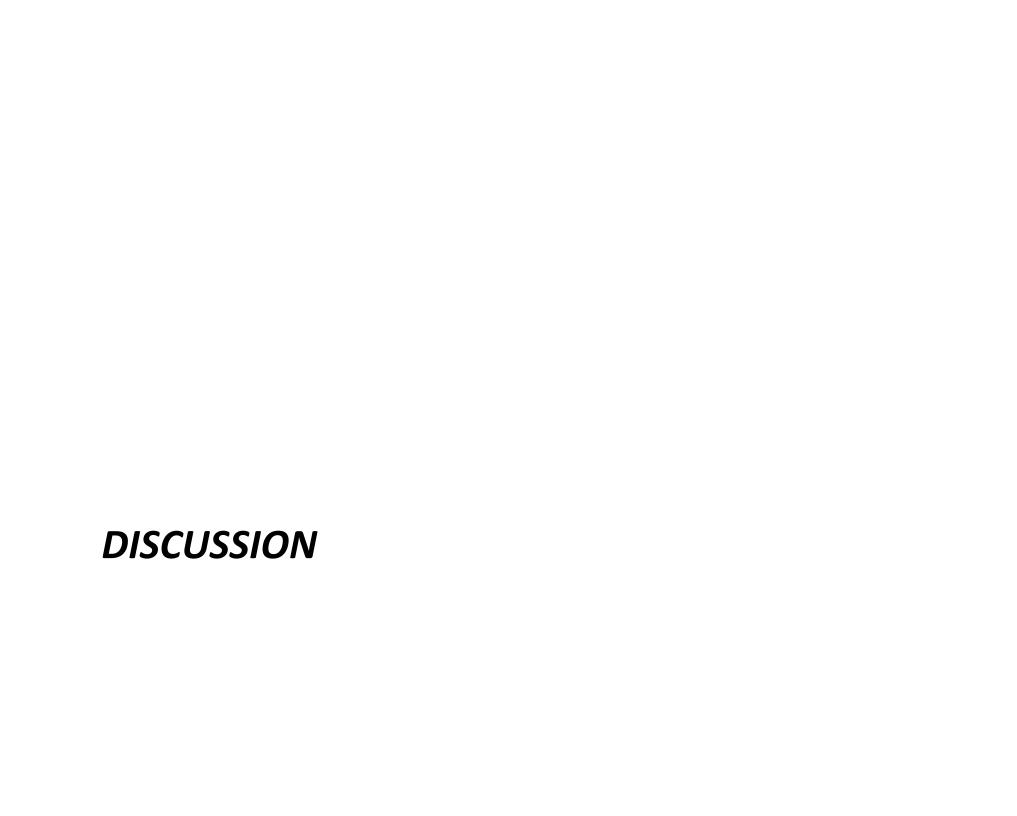

$$N_{\text{eff}} = \frac{\rho_{\nu}^{\text{rel}}}{\rho_{\nu,m=0}^{\text{th}}} = \frac{P_{\nu}}{P_{\nu,m=0}^{\text{th}}}.$$

$$P_{\nu} = \frac{g}{2\pi^2} \int dp \frac{p^4}{3E} f_{\nu}(p), \qquad E = \sqrt{m^2 + p^2}.$$

- contribution of one thermalized sterile neutrino to $N^{\text{CMB}}_{\phantom{\text{eff}}}$

• 3+1: iscontours of ΔN^{CMB}_{eff}

v_s and cosmological mass limit


Constrained quantity:

$$\Sigma = m_1 + m_2 + m_3 + m_4 \times \Delta N^{BBN}_{eff}$$

- From CMB measurement of $\Omega_{m,v}$
- Bound (WMAP9): Σ < 0.7 eV
 - Incomplete thermalization lessens conflict

3+2 summary

	U_{e4}	$U_{\mu 4}$	U_{e5}	$U_{\mu 5}$	m_4	m_5	$\Delta N_{ m eff}$	$\Delta N_{ m eff}$	$\sum m_{\nu_s}^{\text{eff}}$
					(eV)	(eV)	(BBN)	z_{eq}	(eV)
Pt. 1	0.055	0.034	0.13	0.13	0.6	0.9	1.86	1.68	1.31
Pt. 2	0.040	0.025	0.17	0.17	0.6	0.9	1.63	1.47	1.18
Pt. 3	0.030	0.016	0.17	0.17	0.6	0.9	1.40	1.25	1.05

Sterile neutrino(s) contribution to N_{eff}

- May be not integer
 - Incomplete thermalization
- May be different for BBN and CMB
 - Mass suppression
 - Signature of eV scale v_s

SBL-motivated sterile neutrinos

- $3 + 1 : N^{BBN}_{eff} = 4$
 - Uncertain compatibility with dark radiation constraints
 - Some tension with cosmological mass bound
- $3+2:N^{BBN}_{eff} \ge 4.4 \text{ (or so)}$
 - Up to one partially populated
 - tension with dark radiation bounds
 - Conflict with cosmological mass bound

Next steps

- SBL experiments: open questions on systematics
- Ab-initio analyses desirable
- towards global analyses: all cosmological data
 - + all terrestrial data
 - Possible? Meaningful?